If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-55X-750=0
a = 1; b = -55; c = -750;
Δ = b2-4ac
Δ = -552-4·1·(-750)
Δ = 6025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6025}=\sqrt{25*241}=\sqrt{25}*\sqrt{241}=5\sqrt{241}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{241}}{2*1}=\frac{55-5\sqrt{241}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{241}}{2*1}=\frac{55+5\sqrt{241}}{2} $
| x=-25÷-5. | | -8r+3=2r-77 | | 8x+75+5x+14=180 | | 8x+75=5x+14=180 | | (x-1)*(x+2)=252 | | -m-7=-4m-22 | | 0.02x+0.05(20-x)=0.01(79) | | -8.5x+0.76=-2.64 | | 2x(x^2-9)(4-x^2)(x^2+x+3)=0 | | y/2=60 | | 2(c-17)=-18 | | 6d+5=53 | | 6-x=x+8 | | -4+d=91 | | 3.87-f=16.86 | | Xx6=36 | | 42+w=27 | | 12x+13-2x-3=180 | | 12x-2=20x-10 | | x-5+3x+7=10 | | 3u+9=-12 | | (6/7)x-(3/2)x=6 | | t-5=76 | | y/7-4=0 | | 4(c-14)=-32 | | 2(x)+7=-14 | | -0.75p—2=0.25p | | z/8+7=-41 | | x=2x-26 | | 2(x=9) | | (X+2)(x+3)=72 | | A=60+42.95x |